Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: covidwho-2254740

ABSTRACT

Classified as a class B infectious disease by the World Organization for Animal Health (OIE), bovine viral diarrhea/mucosal disease is an acute, highly contagious disease caused by the bovine viral diarrhea virus (BVDV). Sporadic endemics of BVDV often lead to huge economic losses to the dairy and beef industries. To shed light on the prevention and control of BVDV, we developed two novel subunit vaccines by expressing bovine viral diarrhea virus E2 fusion recombinant proteins (E2Fc and E2Ft) through suspended HEK293 cells. We also evaluated the immune effects of the vaccines. The results showed that both subunit vaccines induced an intense mucosal immune response in calves. Mechanistically, E2Fc bonded to the Fc γ receptor (FcγRI) on antigen-presenting cells (APCs) and promoted IgA secretion, leading to a stronger T-cell immune response (Th1 type). The neutralizing antibody titer stimulated by the mucosal-immunized E2Fc subunit vaccine reached 1:64, which was higher than that of the E2Ft subunit vaccine and that of the intramuscular inactivated vaccine. The two novel subunit vaccines for mucosal immunity developed in this study, E2Fc and E2Ft, can be further used as new strategies to control BVDV by enhancing cellular and humoral immunity.


Subject(s)
Diarrhea Virus 2, Bovine Viral , Immunity, Mucosal , Viral Vaccines , Animals , Cattle , Humans , Antibodies, Viral , Diarrhea , HEK293 Cells , Vaccines, Subunit/immunology , Viral Vaccines/immunology , Hemorrhagic Syndrome, Bovine/prevention & control
2.
Antiviral Res ; 181: 104885, 2020 09.
Article in English | MEDLINE | ID: covidwho-663032

ABSTRACT

Influenza A virus (IAV) infection represents a global health challenge. Excavating antiviral active components from traditional Chinese medicine (TCM) is a promising anti-IAV strategy. Our previous studies have demonstrated that 14-deoxy-11,12-didehydroandrographolide (DAP), a major ingredient of a TCM herb called Andrographis paniculata, shows anti-IAV activity that is mainly effective against A/chicken/Hubei/327/2004 (H5N1), A/duck/Hubei/XN/2007 (H5N1), and A/PR/8/34 (H1N1) in vitro and in vivo. However, the underlying anti-IAV molecular mechanism of DAP needs further investigation. In the present work, we found that DAP can significantly inhibit the apoptosis of human lung epithelial (A549) cells infected with A/chicken/Hubei/327/2004 (H5N1). After DAP treatment, the protein expression levels of cleaved PARP, cleaved caspase-3, and cleaved caspase-9, and the activities of caspase-3 and caspase-9 in H5N1-infected A549 cells were all obviously downregulated. However, DAP had no inhibitory effect on caspase-8 activity and cleaved caspase-8 production. Meanwhile, the efficacy of DAP in reducing the apoptotic cells was lost after using the inhibitor of caspase-3 or caspase-9 but remained intact after the caspase-8 inhibitor treatment. Moreover, DAP efficiently attenuated the dissipation of mitochondrial membrane potential, suppressed cytochrome c release from the mitochondria to the cytosol, and decreased the protein expression ratio of Bax/Bcl-2 in the mitochondrial fraction. Furthermore, the silencing of caspase-9 reduced the yield of nucleoprotein (NP) and disabled the inhibitory ability of DAP in NP production in A549 cells. Overall results suggest that DAP exerts its antiviral effects by inhibiting H5N1-induced apoptosis on the caspase-9-dependent intrinsic/mitochondrial pathway, which may be one of the anti-H5N1 mechanisms of DAP.


Subject(s)
Antiviral Agents/pharmacology , Apoptosis/drug effects , Caspase 9/genetics , Diterpenes/pharmacology , Influenza A Virus, H5N1 Subtype/drug effects , Signal Transduction/drug effects , A549 Cells , Animals , Caspase 9/metabolism , Cell Survival/drug effects , Dogs , Drug Discovery , Humans , Madin Darby Canine Kidney Cells
SELECTION OF CITATIONS
SEARCH DETAIL